
TEMPLATE DESIGN FOR INFORMATION EXTRACTION

Boyan Onyshkevych
US Department of Defense

Ft. Meade, MD 20755
ernail:baonysh@afterlife.ncsc.mil

The design of the template for an information exttaction application (or exercise) reflects the nature of the task
and therefore crucially affects the success of the attempt to capture information from text. This paper addresses the
template design requirement by discussing the general principles or desiderata of template design, object-oriented vs.
flat template design, and template definition notation, all reflecting the results and lessons learned in the TIPSTER/
MUC-5 template definition effort which is explicitly discussed in a Case Study in the last section of this paper.

GENERAL CONSIDERATIONS

The design of the template needs to balance a number of (often conflicting) goals, as reflected by these desider
ata, which apply primarily to object-oriented templates (see below), but also have applicability to flat-structure tem
plates as well. Some of these desiderata reflect well-known, good data-base design practices, whereas others are
particular to Information Exttaction. Some of these desiderata are further illustrated in the Case Study section below.

• DESCRIPTIVE ADEQUACY - the requirement for a template to represent all of the information neces
sary for the task or application at hand. At times the inclusion of one type of information requires the
inclusion of other, supporting, information (for example, measurements require specification of units,
and temporally dynamic relations require temporal parametrization).

• CLARITY - the ability to represent information in the template unambiguously, and for that information
to be manipulable by computer applications without further inference. Depending on the application,
any ambiguity in the text may result in either representation of that ambiguity in the template, or repre
sentation of default (or inferred) values, or omission of that ambiguous information altogether.

• DETERMINACY - the requirement that there be only one way of representing a given item or complex
of information within the template. Significant difficulties may arise in the information extraction appli
cation if the same interpretation of a text can legally produce differing structures.

• PERSPICUITY - the degree to which the design is conceptually clear to the human analysts who will
input or edit information in the template or work with the results; this desideratum becomes slightly less
important if more sophisticated human-machine interfaces are utilized, or if a human is not "in the
loop". Using object types which reflect conceptual objects (or Platonic ideals) that are familiar to the
analysts facilitates understanding of those objects, thus the template.

• MONOTONICITY -a requirement that the template design monotonically (or incrementally) reflects
the data content. Given an instantiated template, the addition of an item of information should only
result in the addition of new object instantiations or new fills in existing objects, but should not result in
the removal or restructuring of existing objects or slot fills.

• APPLICATION CONSIDERATIONS - the particular task or application may impose structural or
semantic constraints on the template design; for example, a requirement for use of a particular evalua
tion methodology or system for evaluation may impose practical limits on embeddedness and linking.

One other consideration comes into play when there is a current or potential requirement for multiple template
designs in similar or disparate domains.

• REUSABILITY- elements (objects) of a template are potentially reusable in other domains; eventually
a library of such objects can be built up, facilitating template building for new domains or requirements,

19

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
Template Design for Information Extraction

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Department of Defense,Fort Meade,MD,20755

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Fifth Message Understanding Conference (MUC-5), 25-27 Aug 1993, Baltimore, MD.
Sponsored by the Defense Advanced Research Projects Agency.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

OBJECT-ORIENTED TEMPLATE DESIGN
The MUC3 and MUC4 terrorist domain templates were "flat" data structures with 24 slots; this led to consider

able awkwardness in representing the relationships between data items in different slots. For example, in order to cor
relate the name of a terrorist target with the nationality of that target, a "cross-reference" notation had to be
introduced. Additionally, large portions of the template would remain blank if there were no discussion of that type of
information (e.g., if there were no human targets discussed at all).

In response to these difficulties, and in response to increased movement towards object-oriented data bases in
Government and commercial applications, the template design for the TIPSTER/MUCS task is object-oriented. In
other words, instead of using one template to capture all the relevant information, there are multiple sub-template
types (object types), each representing related information, as well as the relationships to other objects. A completed
template is a set of filled-in objects of different types, representing the relevant information in a particular document.
Each object thus captures information about one thing (e.g., a company, a person, or a product), one event, or an inter
relationship between things, between events, or between things and events. A filled-in template for a particular docu
ment may, therefore, have zero, one, or many object instantiations of a given type. A completed template will
typically have multiple Objects of various types, interconnected by pointers from object to associated object. If there
is no information in the document to fill in a given object, that object is not incorporated into the completed template.
If a document is not relevant to the domain, no objects are instantiated beyond the "header" object which holds the
document number, date of analysis, etc.

For example, both MUCS{fiPSTER domains had an object type ENTITY, which captured information about
companies, organizations, or governments. Each company participating in a joint venture (in the JV domain) would
be represented by a separate ENTITY object, with information about the NAME of the company (or government or
organization), any ALIASES that are used to refer to it in the text, its TYPE (specifically COMPANY, GOVERNMENT,
or ORGANIZATION), its LOCATION, its NATIONALITY (e.g., Honda USA Inc. is a Japanese company located in
the US), pointers to objects representing PERSONs and FACILITYs associated with that company, as well as point
ers to objects representing joint venture or parent-child relationships in which the company participates.

Although the task in MUC--s and TIPSTER was to build a separate template for each document, the use of this
object-oriented approach, and levemgiilg the current boom of object-oriented data bases and analysis tools, will facil
itate the migration of this technology lo a data base-building effort.

CASE STUDY: TIPSTERIMUCS

The template definition 'J)Tocess in the TIPSlER/MUC-5 exercise consisted of a lengthy process of reconcilia
tion of multiple, often contradictory, goals. In addition to the desidemta mentioned above (or an earlier, less well
understood version of that list), the templates needed to satisfy the programmatic goals of TIPS1ER and the represen
tativeness requirements of the participating government Agencies. The TIPS1ER progmm was chartered to push the
state of the art in Information Extraction in order to reach a breakthrough which would allow the wide-spread transfer
of this technology to operational use; additionally, TIPSTER intended to chart out the capabilities of the technology.

To meet these goals, the tasks and templates were designed to (implicitly) cover a range of linguistic phenom
ena (e.g., coreference ·resolution, metonymy, implicature) and to (explicitly) require the full range of Information
Extraction techniques (e.g., string fills, normalization, small-set classification, large-set classification). The task had
to be structured in such a way that the management of the various funding Agencies would see that the technology
had applicability to the type and size of tasks addressed by their Agency. This set of goals resulted in a need to define
a set of tasks which would be substantially mote challenging and extensive than the tasks from previous MUCs or
current operational systems. Although still considered to be very substantial and extensive, the final template design
reflect substantial trimming and reduction of information content from earlier versions, reflecting pmgmatic program
matic considerations.

In the TIPSTER/MUC-5 exercise, templates were defined for two domains (see "Tasks, Domains, and Lan
guages" in this volume). The template is defined in a BNF-like formalism which specifies the syntax of the template
(the formalism is defined in Appendix Abelow); the semantics are defined in the Fill Rules document that was devel
oped for each language/domain pair (see "Corpom and Data Preparation" in this volume).

20

The template that evolved over time didn't meet the Monotonicity desideratum in some cases. Although the
"data bases" being built in the TIPSTER/MUC5 tasks were not dynamic over time, a small omission in a system tem
plate (vs. the "key" or answer template) at times reflected a Monotonicity failure in that the small omission resulted in
major differences in the templates. For example, in the Joint Ventures domain, an ACTIVITY object could point to
two (or more) INDUSTRY objects; however, if REVENUE (or START TIME or END TIME) information within that
ACTIVITY were only applicable to one of the INDUSTRYs, that one ACTIVITY object would be split into two
ACTIVITYS, each pointing to an individual INDUSTRY, along with any information specific to that ACTIVITY.

Figurel: Example of a correct template structure Figure2: Same template without REVENUE

Figwe 1, for example illustrates how a (hypothetical) correct template structure piece might appear (diagrammati
cally); note two ACTIVITY objects. In Figure 2 (representing a template missing the REVENUE information) the
omission of REVENUE information would not only result in a missing REVENUE object, it would also result in a spu
rious INDUSTRY fill on the ACTIVITY object (as well as an entire missing ACTIVITY object). Within the scope of
the evaluation conducted in TIPSTER/MUC-5, this difference would result in a scoring penalty far greater than for
one object

In the TIPSTER/MUC-5 template for Joint Ventures, executives (and others) of the companies involved in the
tie ups were represented in objects called PERSON, which represented the name and position of those individuals.
Because the position information is not an intrinsic static property of that individual but rather transitory relational
information (i.e., it reflects the nature of that individual's relation to a given company), the template design caused
problems when the individual in question changed positions (often an executive of a parent company would become
the president or director of a child company). Thus the Descriptive Adequacy desideratum was violated, since the
template was not able to represent the change in that relationships between the individual and the companies. If we
created a new object for a person for each position, we would violate the Perspicuity desideratum (since a PERSON
object wouldn't represent a person per se, but a person in a particular job). Thus it would have preferable to either
represent that relational information with the appropriate parameters (time and associated entity) or not at all.

A Determinacy desideratum inadequacy became apparent when it was noticed that the analysts who filled the
templates had wffering notions of how to represent multiple products in the JV domain. If two products, say "diesel
trucks" and "four-door sedans" were to be manufactured as the ACTIVITY of a tie up, some analysts would instanti
ate one INDUSTRY object, then have multiple fills for the PRODUCT /SERVICE. Other analysts, however, would
instantiate two INDUSTRY objects, put one product in each, then reference both INDUSTRYs from the same
ACTIVITY. Although this was clarified in the Fill Rules, the analysts would occasionally err. A preferable solution
would have been to allow only one PRODUCT/SERVICE per INDUSTRY, thus avoiding any possible Determinacy
failure on this point (and ameliorating the Monotonicity failure discussed above).

21

APPENDIX A: NOTATION

< ..• >

{ ... }

{ { ... } }

data object type (i.e., if indicated as a filler, any instantiation of
that data object type is allowable) • Every new instantiation is named by
the type concatenated with: '-', the normalized document number, '-', and
a one-up number for uniqueness. The angle-brackets are retained in the
instantiation, as a type identifier/delimiter.

what follows is the structure of the data object

what follows is a specification of the allowable fillers for this slot

what follows is the set itemization

choose one of the elements from the ..• list. Note that one of the ele
ments (typically "OTHER") may be a string fill where information which
does not fit any of the other classes is represented (as a st~ing); this
set element would be identified by double quotes in the definition, and
delimited by double quotes in the fill.

choose one element from the set named by .•• (like{ ••. } except that the
list is too long to fit on the line)

i< ... { ..• }i>these delimiters identify a hierarchical set fill item. The first term
after i< is the head of the subtree being defined in this term, and is
itself a legal set fill term. What follows that term is a set of terms
which are also allowable set fill choices, but are more specific than the
head term. The most specific term specified by the text needs to be cho
sen. For example, the term i<RAM {DRAM, SRAM}i> means that RAM, DRAM, and
SRAM are all legal fills; if the text specifies DRAM, then choose DRAM,
but if the text specifies just RAM, then select RAM. In sco~ing, special
consideration will be given when an ancestor of a term is selected instead
of the required one (as opposed to scoring 0 as in the case of a flat set
fill). Note that items in the set (i.e., inside the { ••• }) can them
selves be hierarchical item. Note that one of the elements (typically
"OTHER") may be a string fill where information which does not fit any of
the other classes is represented (as a string); this set element would be
identified by double quotes in the definition, and delimited by double
quotes in the fill.

+

*

(...)

((...))

one or more of the previous structure; newline character separates

multiple structures

zero or more of the previous structure; newline character separates multi
ple structures; if zero, leave blank

zero or one of the previous structure, but if zero, use the symbol
instead of leaving position blank

exactly one of the previous structure

OR (refers to specification, not answers or instantiations)

"-"

delimiters, no meaning (don't appear in instantiations) NB: DOES NOT MEAN
'OPTIONAL'

delimiters, doesn't appear in instantiation, but contents are OPTIONAL but
either all the contents appear, or none of them, in the case where there
are no connectors (e.g., I) or operators (e.g., +or A) within these
delimiters: for example, with A ((B C)) D, only AD and ABC Dare legal.
If there is a connector inside these delimiters, then the either null or
one of the forms are allowed fills: ((A I C)) means that the legal fills
are 1) empty 2) A, and 3) C. Note that these delimiters essentially mean
that the contents appear zero or one times. Also note that "OPTIONAL"
here means that the position are left blank if no info, not that scoring
treats these terms as optional.

22

. ·I· .

. ('

.) ,
" "

" "

[••• 1
[[..]]

I

Disjunction of the terms (XOR)

escape for the paren (i.e., the paren appears in the slot fill in that
position)

escape for the right paren

any string (from the text, except for COMMENT fields) . The quotes remain
in the instantiation around non-null-string fills.

any string (from the text); the ..• may be a descriptor of the fill. The
quotes remain the instantiation around non-null-string fills.

normalized form (see discussion for form specifications).

range; select integer from specified range; left-pad integer fills with
O's, if necessary, to conform to number of digits used

This notation is for answer key templates only (test or development), not
for system answers. The slash indicates a disjunction (XOR) of allowed
answers. Each disjunct appears on a new line. If the I appears as the
first character of a slot filler, then a null answer (i.e., no fill) is an
allowable fill. If multiple fillers are allowed (by a + or * notation) for
the slot, then the possible fillers are given in disjunctive normal form
(variable number of conjuncts per disjunctive term), for example, (disre
garding the new-lines): I NICHROME GOLD I NICHROME GOLD TUNGSTEN TITANIUM
would mean that the three allowed answers are 1) (empty string),2)
NICHROME GOLD, and 3) NICHROME GOLD TUNGSTEN TITANIUM. An object can be
indicated as being optional if (all) pointers to that object appear after
a 1. System answers are not allowed to offer optional or alternate fills
(answers) •

Unless otherwise marked (i.e., by+, -, or A), a slot may be left blank if the informa
tion is absent in the text. If a structure descriptor is not terminated by +, *, -, or
A' then zero or one of the structure are allowed. If two (or more) structure descriptors
are given without a connector between them and without either one being marked by+, *,
-, or A, then either both appear or neither appears: [NUMBER] 'C' means that 423 C is a
legal fill, but 423 is not, nor is just C.

23

